Implementing an Auto-contouring Software (Limbus AI) into a Radiotherapy Planning Workflow

A. Nanda¹, D. Sandys¹, G. Bell¹, K. Quingua¹, P. Nguyen¹, J. Wang¹, T, Patel¹, D. D'Souza¹, U. Johnson¹, N. Lalli¹, A. Adegunloye¹, J. Heywood¹, V. Nguyen¹, C. Gillies¹, B. Naeem¹, C. Maguire¹, D. Brand^{1,2}

¹University College London Hospitals NHS Foundation Trust ²University College London University

Clinical Problem

- When planning radiotherapy, oncologists must contour target volume (TV) and organs at risk (OAR) on the planning CT
- CTs have hundreds of images/slices so contouring is time consuming
- Delays in contouring may contribute to delays in patient pathways

Al Solution

- Limbus AI is a CE marked auto contouring software that will draw these contours automatically, the clinician will then edit and approve them
- Limbus AI is 1 of the 9 companies that are NICE approved auto-contouring companies. NICE and RCR state we should be producing evidence on clinical acceptability, time saving and errors and their implications.

Deployment

Pre-implementation

- Funding was sought locally and from the North Central London Cancer Alliance
- Locally a digital healthcare checklist was followed and included the safety case report, information governance (IG) and data protection impact assessment
- · Systematic review on existing literature done to determine site order roll out
- Retrospective review using Likert score (1-5) and clinician feedback to determine if adequate for use

Implementation

- Anatomical structures for each site were decided and templates created
- Protocols were matched to templates to ensure automatic attachment of the correct template
- Clinician training undertaken using a simple
- We have implemented into all adult and pediatric site - over 1500 scans through Limbus!

Protocol Name	▼ Structure Set To Apply		
UCH_RT_4DCT_ABDOMEN (Adult)	Abdomen_v1.0		
UCH_RT_4DCT_SABR (Adult)	Thorax_All		
UCH_RT_4DCT_THORAX (Adult)	Thorax_All		
UCH_RT_Abdomen_Adult (Adult)	Abdomen_v1.0		
UCH_RT_Aboveknee (Adult)	SacromaLowerLimb_v1.0		
UCH_RT_ADV_ABDO (Adult)	Abdomen_v1.0		
UCH_RT_Belowknee (Adult)	SacromaLowerLimb_v1.0		
	Prostate(+Anorectum)_v3.0 (M)		
UCH_RT_Brachy_Pelvis (Adult)	Anorectum(+Gynae)v_2.0		
UCH_RT_Breast (Adult)	Breast		
UCH_RT_CSI (Adult)	CSIv1.0		
UCH_RT_DIBH_BREAST (Adult)	Breast		
UCH RT Head (Adult)	Brainv1.0		

Structure	Modality	Introduced in version	HNv2.0 (discontinue	Thorax fo Oesophage
~	~		d) 🔻	structur
A_Aorta	СТ	1.1.0	No	Yes
A_Aorta_B ase	ст	1.8.0		Yes
A_Aorta_I	СТ	1.7.0	No	Yes
A_Cellac	СТ	1.7.0	No	No
A_LAD	ст	1.6.0	No	Yes
A_Mesente ric_S	ст	1.7.0	No	No
A_Pulmona ry	ст	1.7.0	No	Yes
Applicator_ Cylinder (beta)	ст	1.8.0		No
Applicator_ Ring (beta)	ст	1.8.0		No
Atrium_L	СТ	1.8.0		Yes
Atrium_R	ст	1.8.0		Yes
Bladder	ст	1.1.0	No	No
Bladder	MR T2	1.7.0	No	No
Bladder_CB CT	ст свст	1.8.0		No

Real World Analysis

Prospective Subjective Feedback

- Retrospective review using Likert score (1-5) and clinician feedback to determine what structures contoured well
- The feedback was incorporated into the training

AVERAGE PER STRUCTURE

Cost Analysis

(Cost of Limbus for a year/ Total cost of contourer contouring) * 100 = % of time per person needed to be saved to make Limbus viable

6.77% of time if assuming $1/5^{th}$ time (2PAs) \rightarrow 32.5 minutes/week \rightarrow 130 mins/month/pp

Median time saving = 45 minutes (self reported)

Median = 6 patients/month/consultant

6 * 45 = 270 minutes/month

Almost DOUBLE the required time saving to be viable

Re-planning Work

- Compared the plans generated by Limbus structures to the edited plans to see which OAR structures violate the dose optimisation constraints
- Results of this are currently under analysis

Workflow Analysis

- Limbus reduced the no. of replans needed due to plan quality (plans sent back to clinicians by physics team)
- Significantly (p = 0.002) reduced the number of patients that took >31 days from CT to receiving radiotherapy
- Specifically, significantly reduced the number of patients that took <21 days from CT to plan sign off showing this reduction could be due to speeding up contouring

Subjective vs Objective Findings

- Comparison of clinician scores to objective Dice score and Hausdorff distance (objective measures of difference)
- No correlation between the two showing that Likert scores by clinicians may not be an accurate way of analysing AI contours
- Spearman = 0.41, p=0.239

Milestones

- Implemented into all adult and paediatric sites at UCLH
- Analysed implementation subjectively and objectively showed the benefit in feedback, cost savings and shortening patient pathway
- ✓ Business case written

Milestones and Future Steps

- Finish analysis on plan comparisons
- Conference abstract submission
- Paper on 'Real-world analysis methods for an auto-contouring software'